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Motivation and Background

 VANET clustering benefits [1]
« Transportation network: traffic capacity, safety, and cooperative driving

enhancement
« Air Environment: fuel efficiency improvement and exhaust emissions
reduction
Platooning improves traffic Cooperative driving facilitates
capacity, fuel economy, and safety safety in autonomous driving
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I [2] G. Liu, et al., “Enhancing clustering stability in VANET: A spectral clustering based approach. China Communications,” 17(4), 2020, pp. 140-151.

Challenges of VANET Clustering

« State-of-the-art VANET clustering Algorithms

 Distributed clustering approaches
» High control message overhead
« Manually select hyperparameters
* Not intelligent and learnable

« Machine learning-based clustering approaches
» Leverage only a single feature

* Not learnable

Clustering Algorithm

Weight-based Clustering [1]

ML-based Clustering [2]

GNN-based Clustering
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2019, e0214664.

[1] A. Bello Tambawal, et al., “Enhanced weight-based clustering algorithm to provide reliable delivery for VANET safety applications,” PloS one, 14(4), R
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Goal and Proposal Summary

Goal: enhance the vehicle system’s
stability and optimize the average
lifetime of all clusters

 Why we choose GNN

 Fits naturally to solve clustering type of
graph problem

« Uses both node feature and graph
Information

« Centralized approach and offloads the
computation to BS

* It's the very first attempt to apply GNN to
solve the clustering problem in VANET
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Graph Construction

Graph is modeled by force-directed algorithm [1]

« Relative force among vehicle interconnection weighs the similarity
between the movement patterns of 2 vehicles

« The greater the positive forces among nodes are, the more similar the

moving pattern is
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| e [1] L. A. Maglaras, and D. Katsaros, “Distributed clustering in vehicular networks,” IEEE 8th international conference on wireless and mobile
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Graph Construction Visualization

* Open-source highD traffic dataset [1]

* Naturalistic vehicle trajectory recordings on
German highways

« Cover about 420 m road segment. The
median duration of visible vehicles 1s13.6s

 Traffic information includes vehicle
trajectory, type, size, etc. The Position error
Is typically less than 10 cm
* Apply force-directed algorithm to highD
dataset to customize our graph dataset
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Design of GNN Clustering Algorithm

« Spatial-based convolutional graph neural network
 Input is vehicle feature and graph; output is useful node embedding
* Apply SAGE convolutional layer [1]
* Apply Mean aggregator and search depth K = 2
k rk 1 k—1
BE=o(W *m;ﬁ(hj Fy))

Aggregate Feature Information From Neighbors

B s —l-E oo —-E e
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Model Training

« Graph-based loss function in unsupervised learning
« Guidance is the edges existent or non-existent

* Forward propagation

» Calculate node representations via GNN model

» Apply node embeddings to compute pairwise probability among nodes
« Backward propagation

« Calculate loss and update model parameters via stochastic optimization

Je(z;) = — Z (vijlog(9i;) + (1 — yi;)log(1 — 9:)
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Model Training Results

« 1000 training graphs (train:dev=9:1) and 210 testing graphs
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Clustering Visualization

 GNN-based clustering steps
* Apply the trained GNN model on a graph to calculate node embeddings
« Obtain the clustering results by running k-means on node embeddings

* Avisual example of clustering results
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Performance Evaluation

GNN-based algorithm corresponds to the minimum number of
vehicles breaking the initial clusters

Num of Cars Breaking Clusters
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Average Cluster Lifetime Evaluation

* Average cluster lifetimes of GNN-based method is 12.069+0.037s with
confidence 95%. Compared with baseline algorithms, it has the longest
average cluster lifetime
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Coverage Percentage Evaluation

Cluster efficiency of GNN-based algorithms achieve 98.927+0.111%
with confidence 95%
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Conclusions and Future Works

* High performance GNN-based VANET clustering on
open-source highD traffic dataset

* Average cluster lifetime (12.069+0.037s)
« Coverage percentage (98.927+0.111%)

 Future works

« Study other traffic scenarios like urban environment

« Simulation of Urban Mobility (SUMO) for long-term
performance
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